
Terrapin Attack: Breaking SSH Channel Integrity
By Sequence Number Manipulation

Fabian Bäumer
Ruhr University Bochum

Marcus Brinkmann
Ruhr University Bochum

Jörg Schwenk
Ruhr University Bochum

Abstract

The SSH protocol provides secure access to network ser-
vices, particularly remote terminal login and file transfer
within organizational networks and to over 15 million servers
on the open internet. SSH uses an authenticated key exchange
to establish a secure channel between a client and a server,
which protects the confidentiality and integrity of messages
sent in either direction. The secure channel prevents message
manipulation, replay, insertion, deletion, and reordering. At
the network level, SSH uses the SSH Binary Packet Protocol
over TCP.

In this paper, we show that as new encryption algorithms
and mitigations were added to SSH, the SSH Binary Packet
Protocol is no longer a secure channel: SSH channel integrity
(INT-PST) is broken for three widely used encryption modes.
This allows prefix truncation attacks where some encrypted
packets at the beginning of the SSH channel can be deleted
without the client or server noticing it. We demonstrate several
real-world applications of this attack. We show that we can
fully break SSH extension negotiation (RFC 8308), such
that an attacker can downgrade the public key algorithms for
user authentication or turn off a new countermeasure against
keystroke timing attacks introduced in OpenSSH 9.5. We
also identified an implementation flaw in AsyncSSH that,
together with prefix truncation, allows an attacker to redirect
the victim’s login into a shell controlled by the attacker.

In an internet-wide scan for vulnerable encryption modes
and support for extension negotiation, we find that 77% of
SSH servers support an exploitable encryption mode, while
57% even list it as their preferred choice.

We identify two root causes that enable these attacks: First,
the SSH handshake supports optional messages that are not
authenticated. Second, SSH does not reset message sequence
numbers when encryption is enabled. Based on this analysis,
we propose effective and backward-compatible changes to
SSH that mitigate our attacks.

1 Introduction

Secure Shell (SSH). While TLS is commonly used to se-
cure user-facing protocols such as web, email, or FTP, SSH is
used by administrators to deploy and maintain these servers,
often with high privilege (root) access and a large attack
surface for lateral movement within an organization’s infras-
tructure. As such, SSH was developed by Tatu Ylonen in
1995 as a secure alternative to telnet and rlogin/rcp and has
since become a critical component of internet security.

In 1996, SSHv2 was developed to fix severe vulnerabilities
in the original version. In February 1997, the IETF formed
the SECSH working group to standardize SSHv2. After a
decade, it published five core RFCs [25–29]. SSHv2 provides
cryptographic agility and protocol agility without breaking
backward compatibility. Since its original release, dozens
of standardized and informal updates to the protocol have
been published. Because of this, SSHv2 remains relevant
after 25 years without major redesign, but it has also become
difficult to analyze. There is a significant risk that these
extensions of SSH interact to undermine its security goals.

SSH Connections. An SSH connection between a client
and a server begins with the Transport Layer Protocol [29],
which defines the handshake messages for key exchange and
server authentication and how messages are exchanged over
TCP using the SSH Binary Packet Protocol (BPP). After the
handshake, SSH provides a secure channel for application
data. At the application level, the client chooses a sequence
of services to run. In practice, the client will run precisely
two services: the Authentication Protocol [26] for user au-
thentication with a password or public key, followed by the
Connection Protocol [27] for the bulk of SSH’s features like
terminal sessions, port forwarding, and file transfer.

1.1 SSH Channel Security
In this work, we focus on the integrity of the SSH handshake
and the resulting secure channel, as shown in Figure 1. Af-

1

ar
X

iv
:2

31
2.

12
42

2v
1

 [
cs

.C
R

]
 1

9
D

ec
 2

02
3

SSH-2.0-PuTTY-Release-0.79

SSH-2.0-OpenSSH_9.5p1

KEXINIT: nC , algorithm_lists

KEXINIT: nS , algorithm_lists

KEXDH_INIT: gx

KEXDH_REPLY: gy , pkS , sig

SERVICE_REQUEST: ssh-userauth

SSH Connection Protocol

0 0 0 0

1 0 0 1

1 1 1 1

2 1 1 2

3 3 3 3

4 3 3 4

NEWKEYS

NEWKEYS

2 2

2 3

2 2

3 2

SERVICE_ACCEPT

SSH Authentication Protocol

Client Server
Snd Rcv Snd Rcv

A
S

C
II

-

o
v
er

-T
C

P
B

in
ar

y
 P

ac
k
et

 P
ro

to
co

l

Figure 1: SSH handshake using a finite-field Diffie-Hellman
key exchange. Included sequence numbers are implicit and
maintained by the BPP. Snd denotes the counter for sent
packets and Rcv for received packets. Sequence numbers
verified using authenticated encryption are in bold.

ter an initial exchange of version information directly over
TCP, the BPP exchanges packets, each containing precisely
one message. Initially, the BPP is used without encryption
or authentication for the duration of the handshake until the
NEWKEYS message. Afterward, the encryption and authen-
tication keys are used to form a secure channel, with the
intent to protect the confidentiality and integrity of the or-
dered stream of all following messages. Note that technically,
the secure channel consists of two separate cipher streams,
one for each direction, and that the order of message arrival
is only guaranteed for each direction separately.

Message Authentication Codes. As SSH is an interactive
protocol, the integrity of each packet must be verified when
it is received so that it can be promptly decrypted and pro-
cessed. For this, the BPP appends a Message Authentication
Code (MAC) to each packet. A cipher mode and a MAC
form an authenticated encryption scheme [4]. SSH histori-
cally uses Encrypt-and-MAC (EaM), where the MAC is com-
puted over the plaintext, but this is vulnerable to oracle at-
tacks [2]. Later, Encrypt-then-MAC (EtM) was added, where
the MAC is computed over the ciphertext instead. SSH has re-
cently adopted the AEAD ciphers AES-GCM and ChaCha20-
Poly1305, where ciphertext integrity is built into the encryp-
tion scheme [38].

A Trivial Example: Suffix Truncation Attacks. Note that
a per-packet MAC cannot fully protect the channel’s integrity,
as packets are verified and decrypted before the end of com-
munication has been seen. This allows for a trivial suffix

truncation attack, where the attacker interrupts the message
flow at some point during the communication. This is an
inherent limitation of interactive protocols and an accepted
trade-off in the design of SSH, but also, e.g., the TLS Record
Layer. Although this attack cannot be prevented, it can be
detected by requiring “end-of-communication” messages as
the last messages in both directions. Unfortunately, the SSH
standard does not define such messages, while TLS defines
“close_notify” alerts for this purpose [37]. For SSH, it is left
to the user to notice suspicious interruptions of SSH sessions.

Implicit Sequence Numbers. If the MAC was only com-
puted over the payload of each packet, an attacker could still
delete, replay, or reorder packets. Therefore, a sequence num-
ber is included in the MAC computation, corresponding to the
position of the message in the stream. Each peer maintains
two distinct counters (starting at 0), one for each direction.
The Snd counter is incremented after a packet has been sent,
and the Rcv counter is incremented after a received packet has
been processed. Once the secure channel has been established,
the current value of the Snd counter is used to compute the
MAC of an outgoing packet and the current Rcv to verify the
MAC of an incoming packet. If packets in the secure channel
are deleted, replayed, or reordered, the sequence numbers get
out of sync, and MAC verification will fail.

Because TCP is a reliable transport, accidental reordering
of SSH packets cannot occur on the network. Thus, SSH (like
other TCP-based protocols) uses implicit sequence numbers
that are not transmitted as part of the packet.

Security Guarantees of Secure Channels. For TLS, the
security guarantees of the Record Layer were formalized as
stateful length-hiding encryption [35], where the state mainly
consists of the implicit sequence number. The security of the
BPP and implicit sequence numbers was analyzed by Bellare
et al. in [3] and later refined and extended by Paterson and
Watson [36] and Albrecht et al. [1]. These works define, in
slightly idealized scenarios, the following informal security
goal for a secure channel:

When a secure channel between A and B is used,
the data stream received by B should be identical to
the one sent by A and vice versa (INT-PST, [15]).

Within their idealization, all three works confirm that the
BPP is indeed a secure channel. The difference between the
models is that [36] also includes the encrypted length fields
of the CBC Encrypt-and-MAC modes, and [1] considers the
more recent cipher modes ChaCha20-Poly1305, AES-GCM,
and generic Encrypt-then-MAC. Our attacks show that the
models underlying the proofs in [1] are only partially accurate.
We will explain the discrepancies between the proofs and our
findings in Section 2.

2

1.2 Overview of Our Attacks on SSH

In this paper, we show that SSH fails to protect the integrity of
the encrypted message stream against meddler-in-the-middle
(MitM) attacks. More precisely, we present novel prefix trun-
cation attacks against SSH:

We show that the SSH Binary Packet Protocol is
not a secure channel because a MitM attacker can
delete a chosen number of integrity-protected pack-
ets from the beginning of the channel in either or
both directions without being detected (Figure 2).

Attacker Model. We consider a MitM attacker who can
observe, change, delete or insert bytes at the TCP layer. We
assume that the attacker can not break the confidentiality of
the session keys, i.e. the attacker has no information about
the derived encryption keys, MAC keys, or IV.

Prefix Truncation Attacks. While our attacks on SSH are
novel, the idea of prefix truncation attacks against network
protocols by sequence number manipulation is not. To the
best of our knowledge, the first and only description of such
an attack is by Fournet (on behalf of miTLS) in an email to
the TLS working group in 2015, targeting a draft version of
TLS 1.3 [16]. Fournet’s attack increases sequence numbers in
TLS by message fragmentation rather than message injection
and remains theoretical, as “prefix truncations will probably
cause the handshake to fail.” Subsequently, the draft was
modified, and no prefix truncation attacks against the final
version of TLS 1.3 are known. In contrast, we present the first
real-world, practical prefix truncation attack against a mature,
widely used protocol.

Root Cause Analysis. Our results depend on two technical
observations about how SSH protects the integrity of the
handshake and channel:

1. SSH does not protect the full handshake transcript. Al-
though server authentication uses a signature to verify
the integrity of the handshake, the signature is formed
over a fixed list of handshake messages rather than the
complete transcript. This gap in authentication allows
an attacker to insert messages into the handshake and
thereby manipulate sequence numbers.

2. SSH does not reset sequence numbers at the beginning
of the secure channel. Instead, SSH increases sequence
numbers monotonically, independent of the encryption
state. Any manipulation of sequence numbers before the
secure channel carries over into the channel.

Based on these two key observations, we present a series of
novel attacks on SSH with increasing complexity and impact.

SSH-2.0-PuTTY-Release-0.79

SSH-2.0-OpenSSH_9.5p1

KEXINIT: nC , algorithm_lists

KEXINIT: nS , algorithm_lists

KEXDH_INIT: gx

KEXDH_REPLY: gy , pkS , sig

SC1

A
S

C
II

-

o
v
er

-T
C

P
B

in
ar

y
 P

ac
k
et

 P
ro

to
co

l

0 0 0 0

1 0 0 1

1 1 1 1

2 1 1 2

3 3

3 4 4 3

NEWKEYS

NEWKEYS

2 3

2 4

2 2

3 2

SC2

IGNORE
2 2

MITMClient Server
Snd Rcv Snd Rcv

Figure 2: A novel prefix truncation attack on the BPP. The
server sends SC1 and SC2, but the client only receives SC2.

Sequence Number Manipulation. We show that an at-
tacker can increase the receive counters of the server and
the client by inserting messages into the handshake (Sec-
tion 4.1). Although not required for any of our attacks, we
also show that, for some implementations, an attacker can
fully control the receive and send counters, setting them to
arbitrary, attacker-chosen values (Appendix A).

A Prefix Truncation Attack on the BPP. An attacker can
use sequence number manipulation to delete a chosen number
of packets at the beginning of the secure channel. Neither
the client nor the server detects this change. This breaks the
channel integrity of SSH (Section 4.2).

Extension Negotiation Downgrade Attack. As a practical
example, we show an attack that uses prefix truncation to
break extension negotiation [9], thereby downgrading the se-
curity of the connection. The attacked client might mistakenly
believe that the server does not support recent signature algo-
rithms for user authentication or does not implement certain
countermeasures to attacks (Section 5.2). Specifically, we
can turn off protection against keystroke timing attacks in the
recently released OpenSSH 9.5.

Rogue Extension Attack and Rogue Session Attack. As
another example, we show two attacks on the AsyncSSH
client and server. In the first attack, the victim’s extension
info message is replaced with one chosen by the attacker
(Section 6.1). For the second attack, the attacker must have a
user account on the same server as the victim. The attacker
injects a malicious user authentication message so that the
victim logs into a shell controlled by the attacker rather than
the victim’s shell, thereby giving the attacker complete control

3

over the victim’s terminal input (Section 6.2). These attacks
rely on implementation flaws of the AsyncSSH server, in
addition to the prefix truncation attack.

Limitations. Our attacks critically depend on the SSH en-
cryption mode negotiated between the client and the server.
The attack works best with the AEAD cipher ChaCha20-
Poly1305 (added in 2013). The attack also works with signif-
icant probability with any CBC-EtM mode (added in 2012),
while CTR-EtM is vulnerable but not exploitable. On the
other hand, CBC-EaM, CTR-EaM, and GCM modes are not
vulnerable. See Section 4.3 for a complete analysis.

In an internet-wide scan, we show that despite these lim-
itations, 77% of all SSH servers on the internet support a
vulnerable encryption mode, and 57% even list it as their
preferred choice (Section 7).

1.3 Our Contributions

We contribute the following novel results:

• An analysis of the integrity of SSH channels, where we
identify two previously unknown flaws in the SSH spec-
ification, namely gaps in the handshake authentication
and the use of sequence numbers across key activation.

• A novel prefix truncation attack on SSH channel integrity,
where we show that an attacker can manipulate the se-
quence numbers and delete several messages from the
beginning of the secure channel.

• A first security analysis of SSH extension negotiation, in-
cluding a novel downgrade attack that disables extension
negotiation completely. Consequently, support for public
key signature algorithms or, in the case of OpenSSH 9.5,
protection against keystroke timing attacks is disabled.

• As a practical demonstration, two novel attacks on
AsyncSSH. First, a rogue extension attack, where the at-
tacker can insert a chosen extension negotiation message.
Second, a rogue session attack that allows the attacker
to log the victim into an attacker-controlled shell. Both
escalate implementation flaws in AsyncSSH using the
prefix truncation attack.

• An internet-wide scan with up-to-date information on the
distribution of SSH encryption modes and extensions.

Artifacts. Proof-of-concept implementations for our attacks
and the results of our internet-wide scan in an aggregated form
are available under the Apache-2.0 open-source license. See:
https://github.com/RUB-NDS/Terrapin-Artifacts

Ethics Consideration and Responsible Disclosure. We
started a coordinated disclosure and are in discussion with the
maintainers of OpenSSH and AsyncSSH, who acknowledge
our findings. Other vendors of major SSH implementations
will be contacted later in the process. For our internet-wide
scans, we provide an opt-out option and an email address for
inquiries. Additionally, we deployed a blocklist to exclude
networks that did opt out of previous scans. Scan results will
only be published in aggregated form, without any informa-
tion that could identify individual servers or networks.

2 Related Work

Secure Channels. In 2001, Canetti and Krawczyk [11] es-
tablished the first model for secure channels, which only re-
quires protection against adversarial insertion of messages.
Bellare et al. [3] use stateful authenticated decryption to estab-
lish a more robust model, which, as the authors state, should
also prevent replay and out-of-order delivery attacks. They
use implicit sequence numbers as a shared state between
sender and receiver. Paterson et al. [35] define stateful length-
hiding authenticated encryption (sLHAE) to model the TLS
record layer as a secure channel. This definition was used
in [21, 22] to define authenticated and confidential channel
establishment (ACCE) to analyze the combination of the TLS
handshake and record layer. These steps to formalize secure
channels were summarized by Fischlin et al. in [15]. Our
attacks show that SSH BPP, when instantiated with ChaCha20-
Poly1305, CBC-EtM, or CTR-EtM does not provide integrity
of plaintext streams (INT-PST) as defined there.

Formally, SSH BPP security was modelled as stateful de-
cryption [1, 3, 36]. Implicitly, this state was associated with
SSH sequence numbers, and it was assumed that this state
cannot be manipulated by an adversary. These models can be
extended in two directions: (1) Include a broader definition of
state. By including chained IVs, key stream state and GCM
invocation counters, these models can be used to show why
certain cipher modes resist our attacks, and that they indeed
achieve INT-PST security. (2) Introduce a novel adversarial
query ModifyState to model the attacks described here.

Truncation Attacks. Suffix truncation attacks against web
services using TLS have been demonstrated by Smyth and
Pironti in [39]. A prefix truncation attack against a draft
version of TLS 1.3 was described by Fournet (on behalf of
miTLS) in an email to the TLS working group in 2015 [16].
Fournet’s attack increases TLS sequence numbers by mes-
sage fragmentation rather than injection to avoid breaking
handshake authentication. The attack remained theoretical
as “prefix truncations will probably cause the handshake to
fail.” As a countermeasure, the draft was changed back to
reset sequence numbers to 0 when activating keys.

4

https://github.com/RUB-NDS/Terrapin-Artifacts

Attacks on SSH. The most severe attack on SSH was pre-
sented by Albrecht, Paterson, and Watson [2] in 2009. It
exploited the encrypted length field, using the length of the
ciphertext accepted by the server from the network as a de-
cryption oracle for a ciphertext block. In [36], this peculiarity
of the BPP was formalized, and in [1] a variant of this attack
was presented. Other attacks on SSH include a timing attack
on SSH keystrokes by Song, Wagner, and Tian [40], a the-
oretical attack on SSH CBC cipher modes by Wei Dai [12],
and a SHA-1 chosen prefix collision attack on the handshake
transcript by Bhargavan and Leurent [7]. The weakness of
some SSH host keys presented by Heninger et al. [18] was
caused by a lack of entropy and faulty implementations and
is not an inherent weakness of the protocol.

Formal Proofs for SSH. The SSH handshake was analyzed
in [6, 42]. [3] presents a generic security model for SSH BPP,
and [36] a specific, more detailed one for SSH-CTR. Al-
brecht et al. [1] analyze encryption modes in SSH, provide
deployment statistics for them, and present a variant of the
attack on the length field from [2]. They also include security
statements for using ChaCha20-Poly1305, generic Encrypt-
then-MAC, and AES-CTR in SSH, claiming the indistin-
guishability and integrity of the ciphertext. Careful analysis
of their proofs reveals some assumptions that do not hold. In
particular, they assume that the sequence counter is initialized
to 0, which is false for ChaCha20-Poly1305 in SSH. They
also assume that the symmetric encryption is a pseudorandom
permutation, which is not valid for CBC with IV-chaining.
This latter assumption is not apparent from the paper, which
omits the proof, but it is discussed carefully in [17] by Hansen,
one of the authors.

3 Background

SSH Handshake (Figure 1). To initiate an SSH connec-
tion, both peers exchange a version banner. The Binary Packet
Protocol (see below) is used from the third message on but
without encryption and authentication. In the KEXINIT mes-
sages, nonces and ordered lists of algorithms are exchanged:
One list for key exchange, one for server signatures, and two
(one per direction) each for encryption, MAC, and compres-
sion. For each list, the negotiated algorithm is the first client
algorithm in that list which is also offered by the server.

In the KEXDHINIT and KEXDHREPLY messages, a finite-
field Diffie-Hellman key exchange is performed. SSH also
supports elliptic curves (ECDH) and hybrid schemes with
post-quantum cryptography (PQC) as alternatives. The server
authenticates itself with a digital signature as part of the hand-
shake. The signature is computed over the contents of the
previously exchanged messages, in a specified order.

ENCRYPT

MAC

Packet length Data Padding
Sequence

number

Ciphertext MAC

4 Byte 4 Byte 1 Byte

Padding

length

≥ 4 Byte

Figure 3: CBC-EaM in SSH (diagram based on [2, Fig. 1]).

The Exchange Hash: A Partial Handshake Transcript.
In contrast to TLS, SSH uses only a selection from the hand-
shake transcript for authentication. The hash value computed
from this selection is called exchange hash H, defined as:

H = HASH(VC || VS || IC || IS || KS || X || K)

where HASH is the hash function of the negotiated key ex-
change, VC and VS are the version banners of the client and
server, IC and IS are the KEXINIT messages, KS is the server’s
public host key, and K the shared secret derived from the key
exchange. The value of X depends on the key exchange and
contains a composition of negotiated parameters (if any) and
the ephemeral public keys of the key exchange [29, Sec. 8].
Each field includes a length field defined by the encoding.

Although the exchange hash contains everything that may
influence the negotiation of algorithms or computation of
the shared secret, it excludes seemingly ‘unimportant’ mes-
sages or message parts, such as IGNORE messages and unrec-
ognized messages. This authentication gap allows a MitM
attacker to inject messages into the handshake.

Sequence Numbers. Each sequence number is stored as a
4-byte unsigned integer initialized to zero upon connection.
After a binary packet has been sent or received, the corre-
sponding sequence number Snd or Rcv is incremented by one.
Sequence numbers are never reset for a connection but roll
over to 0 after 232 −1. To avoid replay attacks, rekeying must
occur at least once every 232 packets [33, Sec. 6.1].

We illustrate the use of sequence numbers in Figure 1: Af-
ter the banner exchange, the counters Snd and Rcv are initial-
ized with (0,0) on both sides. During algorithm negotiation
and key exchange, sequence numbers are increased but not
used in any MAC computation or verification. Only after keys
are activated the secure channel is established, and sequence
numbers are used for MAC computation and verification. For
each BPP packet, the sequence numbers in bold must match
at both peers; otherwise, the BPP packet is rejected.

SSH Binary Packet Protocol. The BPP is used to encrypt
and authenticate messages. First, a message is prefixed by a
4-byte message length and a 1-byte padding length. Then, at
least 4 bytes of padding are added to the message so that the

5

total plaintext length is a multiple of the block size or 8, what-
ever is larger. On the secure channel, the packet is encrypted
by the cipher mode, and a MAC is added. The details depend
on the chosen cipher mode, which makes use of an implicit
initialization vector IVKDF derived from the session key:

CBC-EaM [29] is part of the original SSH specification.
Here, the MAC is computed over the implicit sequence num-
ber and the packet plaintext (Figure 3). The IV of the first
packet is IVKDF, and IV chaining is used (i.e., the IV of packet
i is the last ciphertext block of packet i−1).

CBC-EtM [32] was added to OpenSSH in 2012. Here, the
packet length is not encrypted to allow checking the MAC
before decryption. The MAC is computed over the sequence
number, the unencrypted packet length, and the ciphertext of
the packet payload. The IVs are handled as with CBC-EaM.

CTR [33] mode was proposed by Bellare, Kohno, and
Namprempre [3] as a countermeasure to attacks on CBC with
IV chaining. Here, IVKDF is used as the initial counter value
and incremented after encrypting a plaintext block. CTR can
be used with EaM or EtM, with identical implications for the
length field and MAC computation as above.

GCM [20] mode was specified by the NSA for Suite B-
compliant SSH implementations [19]. Here, ciphertext in-
tegrity is part of the encryption scheme. The length field is not
encrypted (solely authenticated) to allow verification of the
authentication tag before returning any plaintext. Internally,
GCM uses an invocation counter that is initialized to IVKDF
and incremented by one for each message. The sequence
number is not used but is always offset by a constant from the
invocation counter.

ChaCha20-Poly1305 [30] was added to OpenSSH in 2013,
inspired by a similar proposal for TLS by Langley and
Chang [23, 24]. Here, two different encryption keys are de-
rived, one for the length field and one for the packet payload.
This prevents the length field from being used as a decryp-
tion oracle for the payload. The MAC is computed over the
concatenation of the two ciphertexts. Internally, the AEAD
construction uses the sequence number as IV for each packet.

We note that the SSH specification says that the length
field is encrypted [29, Sec. 6], and that the sequence num-
ber is used for integrity checks [29, Sec. 6.4]. This is only
true for CBC-EaM, CTR-EatM, and ChaCha20-Poly1305.
The modes CBC-EtM, CTR-EtM, and GCM do not encrypt
the length field, and GCM also does not use the sequence
number.

4 Breaking SSH Channel Integrity

In this section, we present a novel prefix truncation attack on
SSH. The basic idea is that the attacker injects messages into
the handshake to increase the implicit sequence number in
one of the peers and then deletes a corresponding number of
messages to that peer at the beginning of the secure channel.
Two key insights about the SSH protocol enable this attack:

SSH Does Not Protect the Full Handshake Transcript.
As detailed in Section 3, the exchange hash signed by the
server during the handshake only authenticates some parts of
the handshake transcript, while other parts are left unauthenti-
cated. This allows an attacker to inject some messages into
the handshake, which cannot affect the key exchange but can
affect the implicit sequence numbers of the peers.

SSH Does Not Reset Sequence Numbers at the Beginning
if the Secure Channel. In SSH, sequence numbers are
only incremented and never reset to 0, even when the encryp-
tion state changes. This allows an attacker to manipulate
the sequence number counters in the secure channel before
encryption and authentication keys are activated.

Comparison to Other Protocols. In IPsec/IKE, only a por-
tion of the handshake transcript is signed, but unlike SSH, se-
quence numbers are reset to 0 when encryption and MAC keys
are activated. In TLS, FINISHED messages are exchanged at
the beginning of the secure channel to verify the integrity of
the complete handshake transcript, and sequence numbers are
reset to 0 after every CHANGECIPHERSPEC message.

4.1 Sequence Number Manipulation
In this section, we show how a MitM attacker can arbitrarily
increase the receive sequence numbers C.Rcv and S.Rcv in
the client and the server. This will be the basis for our prefix
truncation attack and its applications, allowing the attacker to
compensate for messages deleted from the secure channel.

Technique RcvIncrease (Figure 6a). During the hand-
shake, a MitM attacker can increase C.Rcv (resp. S.Rcv)
by N, while not changing any other sequence number, by
sending N IGNORE messages to the client (resp. server).

The correctness is evident from the fact that the SSH stan-
dard requires for IGNORE that “All implementations MUST
understand (and ignore) this message at any time.” [29, Sec.
11.2]. The intended purpose of this message is to protect
against traffic analysis, so it is considered a security feature,
although there is no benefit from it during the handshake
phase. We note that the attacker may also use any other mes-
sage type that does not generate a response.

In addition, we found that an attacker can set the sequence
numbers to arbitrary values by abusing the rollover after 232

messages. These advanced techniques require that the imple-
mentation allows handshakes with many messages, a large
amount of data, and a long operating time. As we do not re-
quire these advanced techniques for our attacks, a description
can be found in Appendix A.

Evaluation. We verified that, as expected, this technique
works with OpenSSH 9.4p1 and 9.5p1, Dropbear 2022.83,

6

PuTTY 0.79, AsyncSSH 2.13.2, and libssh 0.10.5.

4.2 Prefix Truncation Attack on the BPP
Single Message Prefix Truncation Attack. We assume the
attacker wants to delete the first message SC1 sent from the
server (Figure 2). The attack takes two steps:

1. The attacker uses the RcvIncrease technique to increase
C.Rcv by one, e.g., by injecting an IGNORE message to
the client before NEWKEYS.

2. The attacker deletes the first message SC1 sent by the
server.

We first analyze this attack with regard to handshake authen-
tication and sequence numbers. As the key exchange does
not protect the handshake transcript from inserting IGNORE
messages (Section 3), handshake authentication is not broken.
Before the first step, we have C.Rcv = C.Snd. After the first
step, we have C.Rcv = S.Snd+1, but during the handshake
this manipulation is not detected. After the second step, we
have C.Rcv= S.Snd, and sequence numbers are back in sync.

It remains to be shown that the attacker can delete the mes-
sage from the channel, which requires knowing its length,
and that its deletion does not affect the MAC verification and
decryption output for the following messages. This analysis
depends on the encryption mode and will be given in Sec-
tion 4.3. Here, we conclude by describing the general attack.

(NS,NC)-Prefix Truncation Attack. In a single attack, the
attacker can generally delete an arbitrary number of NS initial
messages sent from the server and NC initial messages sent
from the client. This is straightforward: Instead of inserting
one IGNORE message to the client before NEWKEYS, the
attacker inserts NS such messages to the client and NC to the
server. Consequently, instead of deleting the first message
from the server, the attacker deletes NS initial messages from
the server and the NC initial messages from the client.

Note that the single message attack above is the specific
case of a (1,0)-prefix truncation attack.

4.3 Analyis of Encryption Modes
In this section we first discuss how an attacker can determine
the byte-length of SSH messages. Then we analyze which
encryption modes are vulnerable to our attacks, and which
can be exploited. An encryption mode is vulnerable if, after
prefix truncation, all following packets on the secure channel
are decrypted, i.e. an AEAD mode does not generate the
distinguished symbol INVALID or an authenticated encryption
mode successfully verifies the MAC. Note that we allow
decryption to a different plaintext for probabilistic attacks. To
capture this, we define that an encryption mode is exploitable
for an attack, if the message stream after decryption is well-
formed and supports that attack.

Determining the Byte-Length of Messages. To success-
fully delete packets from the secure channel, the attacker
has to know their length. For some encryption modes (CBC-
EtM, CTR-EtM, GCM), the length is sent unencrypted so the
attacker can observe it. For others (CBC-EaM, ChaCha20-
Poly1305), the length is encrypted, and the attacker has to
guess the length, either from known plaintext based on the
used SSH implementations or from network side channels
such as TCP segment sizes. For the following analysis, we
assume that the attacker always knows the message lengths.

4.3.1 Not Vulnerable

GCM. GCM [20] mode does not use the implicit sequence
number. Instead, it uses an invocation counter to derive en-
cryption and MAC keys, initialized to IVKDF and incremented
after each message. The authors justify this by stating that
the resulting nonce is always a fixed offset from the sequence
number. By deviating from the SSH standard, GCM stops
our attack, as the attacker cannot manipulate the invocation
counter during the handshake.

CBC-EaM and CTR-EaM. CBC uses IV chaining, and
CTR uses a key stream. When the attacker deletes any prefix
of the ciphertext in either mode, the first ciphertext block
received will be decrypted as pseudo-random. Because EaM
computes the MAC over the plaintext, MAC verification will
fail with probability close to 1, and our attack is stopped.

4.3.2 Vulnerable And Perfectly Exploitable

ChaCha20-Poly1305. ChaCha20-Poly1305 [30] directly
uses the sequence number in its key derivation, which makes
it vulnerable to our prefix truncation attack. All messages
following the truncated prefix are decrypted to their original
plaintext, because the integrity check of the AEAD cipher
is only over the ciphertext and the sequence number that
has been manipulated by the attacker to match. Under the
assumption that the attacker can correctly guess the packet
length, the prefix truncation attack always succeeds.

Note that the fault is not with ChaCha20-Poly1305 as an
AEAD encryption scheme, but with its integration into the
SSH secure channel construction.

4.3.3 Vulnerable, But Not Exploitable

CTR-EtM. With CTR-EtM, the MAC is computed over the
unencrypted length, the sequence number, and the ciphertext.
So, removing some packets from the beginning of the channel
does not cause a MAC failure, and cryptographically, the at-
tack succeeds. However, CTR uses a block counter initialized
to IVKDF, which is incremented after each block. After prefix
truncation, the key stream is desynchronized, so all following
ciphertexts are decrypted as pseudo-random packets. Each

7

corrupted packet has a significant probability of causing a
critical failure, which eventually stops our attack.

Remark: Decryption Oracle for CTR-EtM Using Prefix
Truncation. For CTR-EtM, prefix truncation of k blocks
(which exactly contain one or more messages) provides a
very limited decryption oracle on the ciphertext c1, . . . ,ck
where ci := Enc(IVKDF + i)⊕ pi,1 ≤ i ≤ k. After deleting
the first k blocks, MAC verification for the following message
of length l blocks will succeed because the length, sequence
number, and ciphertext are correct. The blocks ck+1, . . . ,ck+l
will be decrypted as p′j := Enc(IVKDF + j)⊕ ck+ j,1 ≤ j ≤
l, and processed as a pseudo-random SSH message SC1’.
Due to format oracle side channels in SSH at the BPP layer,
e.g. the padding length, but also at the protocol layer, e.g.
if a message is ignored or triggers a response, the attacker
can get some information about the bits in p′j. This reveals
information about the first l key stream blocks, and thus also
about p1, . . . , pl , potentially leaking confidential information
like passwords in user authentication. If processing SC1’ does
not cause a critical failure, the attack can even continue further
with the decryption of the next message, revealing more about
the following key stream and, thus, plaintext. Exploiting this
requires a careful study of format oracles in SSH, which is
outside the scope of this work.

4.3.4 Vulnerable And Probabilistically Exploitable

CBC-EtM. With CBC-EtM, the MAC is computed from
the unencrypted length, the sequence number, and the cipher-
text. The IV is not required because IVKDF is implicit, and all
other IVs are authenticated before use. Consequently, prefix
truncation does not cause a MAC failure, and cryptographi-
cally, the attack succeeds. Nevertheless, we need to consider
the impact that IV chaining has on the immediately following
packet to see if this attack is practically exploitable.

Recall that the decryption of the first block is p1 :=
Dec(c1)⊕IVKDF and for block i it is pi :=Dec(ci)⊕ci−1. We
assume the attacker uses prefix truncation to remove blocks
c1, . . . ,ck. The following block ck+1 will now be decrypted as
p′1 := Dec(ck+1)⊕ IVKDF. We are interested in how SSH im-
plementations process the resulting pseudo-random block p′1
as the first block in the decrypted packet. Intuitively, it should
result in a corrupted packet that causes a critical failure. 1

Surprisingly, there is a significant probability that the attack
can continue, although it is highly implementation-dependent.
For a corrupted packet, there are three possible outcomes:

1. Critically Corrupt: If the corruption is detected at the
BPP or application level, e.g., some length field exceeds
the packet length, the connection should be closed.

1Similarly to CTR-EtM, any format oracle side channel for p′1 reveals a
relationship between IVKDF and pk+1 via IVKDF ⊕ pk+1 = ck ⊕ p′1, which is
a marginal information leak for the (secret) IV given information on pk+1,
and vice versa. Again, we do not explore this further here.

2. Marginally Corrupt: If the packet happens to be similar
enough to the original, e.g., if the corruption is limited
to optional fields, it should be processed without error
and have the same effect as the original would have had.

3. Evasively Corrupt: If the packet is well-formed (i.e.,
has valid padding length) but has an unrecognized mes-
sage ID, an UNIMPLEMENTED response must be sent,
and the connection continues normally [29, Sec. 11.4].

Clearly, the first outcome stops any attack from going for-
ward. However, the second and third outcome may be ben-
eficial for the attacker. We will now present two instructive
scenarios for these two outcomes and estimate the success
probability of an attack relying on that outcome. Later, we
will see some experimental verification for these estimates.

Scenario 1: CBC-EtM Prefix Truncation Of a Single Mes-
sage, Second Message Has Format Flexibility. In this sce-
nario, the attacker wants to remove the first message, and the
second, corrupted message needs to be functionally preserved
but has some format flexibility. For example, the second mes-
sage might be SERVICEACCEPT (see Section 5.2), which is
critical to start user authentication. The encrypted part of the
packet looks like this, where p is the padding length, m the
message id, and n the service name length:

p m n Service Name

0e 06 00 00 00 0c s s h - u s e r a u

t h Random Padding

The probability that the first block decrypts exactly as shown
is only 2−128 for a 128-bit block cipher. However, for some
clients, the service name string is optional. These clients
accept a 1-byte message with p = 30 (0x1E) and m = 6 as
marginally corrupt, which has a success probability of 2−16,
independent of the block size.

Although SERVICEACCEPT may be a lucky case, there are
structural reasons for this result: First, SSH messages are
often short and can be smaller than a single block. Second,
the padding is random and cannot be verified. Third, some
messages have redundant fields that implementations ignore
(e.g., the service name above).

We experimentally verified that OpenSSH, Dropbear,
PuTTY, and libssh allow empty SERVICEACCEPT messages
from the server, enabling this attack. At the same time, Async-
SSH is very strict and requires the correct service name.

Scenario 2: CBC-EtM Prefix Truncation Attack On More
Than One Message. In this scenario, we assume the at-
tacker wants to remove the first N > 1 messages and perfectly
preserve all of the following messages. Then, the attacker can
use prefix truncation to delete the first N −1 messages, and
take a bet on the N-th message to be evasively corrupt.

8

Let ℓ be the length of the ciphertext of the N-th message,
with padding length p, message ID m, and random padding.
The attack succeeds regardless of the content of the corrupted
packet as long as it is well-formed and unrecognized: A
packet is well-formed if 4 ≤ p ≤ ℓ− 2 (accounting for the
padding length and message ID). A packet is unrecognized if
m is a message ID not known by the implementation.

Because the message is well-formed, it is not rejected at
the BPP layer. Furthermore, because the message is unrec-
ognized, the peer must respond with UNIMPLEMENTED and
otherwise ignore it [29, Sec. 11.4], so our attack succeeds.

The probability that a packet is well-formed depends on ℓ.
The padding length is between 4 and 255, and ℓ is a multiple
of max(8,block size), so the number of valid padding length
values is min(252, ℓ−5) out of 28.

The probability that a packet is unrecognized depends on
the implementation. The attack requires at least one un-
known message ID. Through source code review, we identi-
fied 43 IDs that are in active use, so we estimate up to 213
unknown message IDs out of 28.

In total, assuming a block size of at least 128-bit (i.e., ℓ≥
16), we estimate that the success probability of this attack is
between 11 ·2−16 ≈ 0.0002 and 252 ·213 ·2−16 ≈ 0.8190 for
vulnerable implementations. Our experiments show success
probabilities from 0.0003–0.8383, in good agreement with
our analysis (Section 5.2). Increasing the block size increases
the lower bound, while the upper bound stays the same.

5 Breaking SSH Extension Negotiation

While the fact that BPP does not implement a secure channel
is troublesome enough, exploiting this vulnerability requires
an analysis of the SSH protocol at the application layer.

As our attack achieves prefix truncation, it is only natural
to ask which SSH messages can occur at the beginning of a
secure channel. Historically, the first messages exchanged
are SERVICEREQUEST and SERVICEACCEPT. Removing
either causes the connection to go stale, as the client will not
begin the user authentication protocol. Then our attack, while
cryptographically successful, fails at the application layer.

However, the SSH Extension Negotiation mechanism [9]
introduces a new message, EXTINFO, which can occur im-
mediately after NEWKEYS as the first message on the secure
channel. Some of the extensions that can be negotiated are
security-relevant, providing a relevant attack surface for our
prefix truncation attack and raising its impact.

In this section, we will first describe SSH Extension Nego-
tiation and then demonstrate how an attacker can downgrade
the security of a connection by removing the EXTINFO mes-
sage from the secure channel in a prefix truncation attack.

5.1 SSH Extension Negotiation
Even though the original SSH RFCs were designed with ex-
tensibility in mind, they do not provide any mechanism to
negotiate protocol extensions securely. RFC 8308 [9] closes
this gap. The RFC describes a signaling mechanism enabling
extension negotiation, the extension negotiation mechanism
itself, and a set of initially defined extensions.

Support for extension negotiation is signaled as part of the
KEXINIT message. To not pose compatibility issues, the struc-
ture of the message is not being altered, and the reserved field
is not used. Instead, each peer may include an indicator name
within the list of key exchange algorithms. The indicator
name differs depending on the role of the peer (ext-info-c
vs. ext-info-s) to avoid accidental negotiation.

Whenever a peer signals support for extension negotiation,
the other side may send an EXTINFO message as the first
message after NEWKEYS. Additionally, the server can send a
second EXTINFO later to authenticated clients to avoid dis-
closing extension support to unauthenticated clients. Each
EXTINFO message contains several extension entries. Nego-
tiation requirements are defined on a per-extension level.

RFC 8308 defines an initial set of four protocol extensions,
and vendors have proposed and implemented additional ex-
tensions. We detail those relevant to our attacks here and
describe the others in Appendix B.
server-sig-algs [9] is a server-side extension that in-

forms the client about all supported signature algorithms when
using a public key during client authentication.
publickey-hostbound@openssh.com [31,32] is a server-

side extension to advertise support for host-bound public key
authentication, which deviates from public key authentication
by also covering the server’s host key. This allows the enforce-
ment of per-key restrictions when allowing remote servers to
access local secret keys (i.e., when using SSH Agent).
ping@openssh.com [32] is a server-side extension to ad-

vertise support for a transport level ping message similar to
the Heartbeat extension in TLS [41].

5.2 Extension Downgrade Attack
We now show how the prefix truncation attack can be applied
to delete the EXTINFO message sent by the client, server,
or both parties without either noticing. Our attack differs
depending on the encryption mode. For ChaCha20-Poly1305,
we can use the basic attack strategy. For CBC-EtM, we show
two strategies to generate additional messages in the secure
channel, so that the attacker can use the “evasively corrupt”
outcome of Scenario 2 in Section 4.3.

Extension Downgrade for ChaCha20-Poly1305. The
downgrade attack for ChaCha20-Poly1305 against the client
is depicted in Figure 4a. It is identical to the single message
prefix truncation attack from Section 4.2, with EXTINFO now

9

EXT_INFO

B
in

ar
y
 P

ac
k
et

 P
ro

to
co

l

1 1 1 1

2 1 1 2

3 3

3 4 4 3

NEWKEYS

NEWKEYS

2 3

2 4

2 2

3 2

2 2

[…]

SERVICE_REQUEST: ssh-userauth

SSH Connection Protocol

4 4 4 4
SERVICE_ACCEPT

SSH Authentication Protocol

KEXDH_INIT: gx

KEXDH_REPLY: gy , pkS , sig

IGNORE

MITMClient Server
Snd Rcv Snd Rcv

(a) Extension Downgrade Attack for ChaCha20-Poly1305: The
MitM injects an IGNORE message before the handshake concludes.
The change in sequence numbers allows the MitM to strip the
EXTINFO from within the secure channel.

KEXDH_INIT: gx

KEXDH_REPLY: gy , pkS , sig

UNIMPLEMENTEDB
in

ar
y
 P

ac
k
et

 P
ro

to
co

l

1 1 1 1

2 1 1 2

4 4

4 5 5 4

NEWKEYS

UNKNOWN

3 3

3 4

2 2

3 2

UNKNOWN
2 2

[…]

SERVICE_REQUEST: ssh-userauth

SSH Connection Protocol

5 5 5 5
SERVICE_ACCEPT

SSH Authentication Protocol

EXT_INFO

4 4

3 4

2 3
UNIMPLEMENTED

MITMClient Server
Snd Rcv Snd Rcv

NEWKEYS
3 3

(b) Extension Downgrade Attack for CBC-EtM: The MitM injects
UNKNOWN before the NEWKEYS is sent by the client. As the
server already sent NEWKEYS, the provoked UNIMPLEMENTED

message will be sent within the secure channel after EXTINFO. The
corrupted UNIMPLEMENTED message has a significant probability
of being ignored (see Scenario 2 in Section 4.3).

Figure 4: Variants of the extension downgrade attack for ChaCha20-Poly1305 and CBC-EtM.

taking the place of SC1 in Figure 2. If the attack should be
directed against the server instead, a (0,1)-prefix truncation
attack should be performed instead. This allows an attacker
to delete any EXTINFO sent immediately after NEWKEYS.

While the server may send a second EXTINFO just before
signaling successful client authentication, stripping the EXT-
INFO message sent after NEWKEYS renders most publicly
specified extensions unusable. This is because they are ei-
ther scoped to the authentication protocol, sent by the client
only, or must be sent by both parties to take effect. Solely
the ping@openssh.com extension may be sent in the second
EXTINFO to enable keystroke timing countermeasures inside
the connection protocol. However, OpenSSH 9.5 does not
implement any facility to send a second extension negotiation
message. As we show in Section 7, extensions scoped to the
authentication protocol are the most common among SSH
servers on the internet by a significant margin.

Successfully performing the extension downgrade can di-
rectly impact the security level of the connection. Most no-
tably, the recently introduced keystroke timing countermea-
sures by OpenSSH 9.5 will remain disabled when the server
has not sent ping@openssh.com. Furthermore, stripping an
EXTINFO containing the server-sig-algs extension can
lead to a signature downgrade during client authentication, as
the client has to resort to trial-and-error instead.

Extension Downgrade for CBC-EtM. In Figure 4b, we
show how the attack can also work with CBC-EtM. Suppose
an attacker injects an UNKNOWN message to the server after
the server sends NEWKEYS and EXTINFO, but before the
client’s NEWKEYS message (and also injects UNKNOWN to
the client to realign sequence numbers). In that case, the
server sends the response UNIMPLEMENTED as the second
message in the secure channel immediately after the EXTINFO
message. The attacker now wants to remove two messages
from the channel and can benefit from the “evasively corrupt”
in Scenario 2 in Section 4.3. The attacker removes EXT-
INFO from the secure channel, which causes the decryption
of the first block of UNIMPLEMENTED to be pseudo-random.
Because UNIMPLEMENTED messages are relatively small
(ℓ= 16 for AES), the upper estimate for the success probabil-
ity is only 11 ·213 ·2−16 ≈ 0.0358.

However, the success probability can be increased signifi-
cantly by exploiting the new ping extension in OpenSSH 9.5.
To make use of this, the attacker replaces the UNKNOWN mes-
sage sent to the server with a PING message containing at least
255 bytes of payload. As per specification, the server will
reflect this data in the PONG response. This yields ℓ≥ 264,
maxing out the probability of the packet being well-formed.
Consequently, the upper estimate for the success probability
is now 252 ·213 ·2−16 ≈ 0.8190.

10

Evaluation. We successfully evaluated the attack on
ChaCha20-Poly1305 and CBC-EtM against OpenSSH 9.5p1
and PuTTY 0.79 clients, connecting to OpenSSH 9.4p1
(UNKNOWN only) and 9.5p1. For CBC-EtM, our success
rate in practice was 0.0003 (OpenSSH) resp. 0.03 (PuTTY),
improved to 0.0074 (OpenSSH) resp. 0.8383 (PuTTY) when
sending PING instead of UNKNOWN.

6 Message Injection Attacks on AsyncSSH

Going beyond the SSH specifications, we now demonstrate
how prefix truncation attacks can also be used to exploit im-
plementation flaws. Specifically, we target AsyncSSH,2 an
SSH implementation for Python with an estimated 60k daily
downloads.3 We present two attacks that exploit weaknesses
in the handling of unauthenticated messages during the hand-
shake. These attacks are enabled by prefix truncation and
sequence number manipulation.

Note that we describe these attacks only for ChaCha20-
Poly1305. Adjusting them for CBC-EtM is straightforward,
injecting appropriate IGNORE and UNKNOWN messages, but
requires some of the advanced techniques described in Ap-
pendix A. These advanced techniques only work against some
SSH implementations.

6.1 Rogue Extension Negotiation Attack

The rogue extension negotiation attack targets an AsyncSSH
client connecting to any SSH server sending an EXTINFO
message. The attack exploits an implementation flaw in the
AsyncSSH client to inject an EXTINFO message chosen by
the attacker and a prefix truncation against the server to delete
its EXTINFO message, effectively replacing it.

The attack is a variant of the extension downgrade attack
in Section 5.2, but instead of IGNORE, the attacker sends a
chosen EXTINFO packet to the client. Similar to IGNORE,
EXTINFO does not trigger a response from the client. A
correct SSH implementation should not process an unauthen-
ticated EXTINFO message. However, the injected message is
accepted due to flaws in AsyncSSH.

AsyncSSH clients support the server-sig-algs and
global-requests-ok extensions. Hence, the attacker can
try to downgrade the algorithm used for client authentication
by meddling with the value of server-sig-algs.

Evaluation. We successfully evaluated the attack against
AsyncSSH 2.13.2 as a client, connecting to AsyncSSH 2.13.2.

KEXDH_INIT: gx

KEXDH_REPLY: gy , pkS , sig

EXT_INFO

B
in

ar
y
 P

ac
k
et

 P
ro

to
co

l

1 1 1 1

2 1 1 2

4 3 3 4

NEWKEYS

NEWKEYS

2 2

2 3

2 3

3 3

SERVICE_REQUEST: ssh-userauth

USERAUTH_REQUESTMITM

3 3

SERVICE_ACCEPT

USERAUTH_SUCCESSMITM

USERAUTH_REQUESTClient

SSH Connection Protocol

5 3

5 4

6 4

2 2

3 5

4 5

5 5

MITMClient Server
Snd Rcv Snd Rcv

[…]

Figure 5: Rogue Session Attack on AsyncSSH: The MitM in-
jects a malicious authentication request before the handshake
completes. The client-side extension information message
is deleted to account for the change in sequence numbers.
By delaying the authentication request sent by the client, the
MitM ensures that the malicious one is being processed. Any
additional authentication requests are silently ignored.

6.2 Rogue Session Attack

The rogue session attack targets any SSH client connecting
to an AsyncSSH server, on which the attacker must have a
shell account. The goal of the attack is to log the client into
the attacker’s account without the client being able to detect
this. At that point, due to how SSH sessions interact with
shell environments, the attacker has complete control over
the remote end of the SSH session. The attacker receives all
keyboard input by the user, completely controls the terminal
output of the user’s session, can send and receive data to/from
forwarded network ports, and is able to create signatures
with a forwarded SSH Agent, if any. The result is a complete
break of the confidentiality and integrity of the secure channel,
providing a strong vector for a targeted phishing campaign
against the user. For example, the attacker can display a
password prompt and wait for the user to enter the password,
elevating the attacker’s position to a MitM at the application
layer and enabling impersonation attacks.

The messages exchanged during the attack are depicted in
Figure 5. The attacks work by the attacker injecting a chosen
USERAUTHREQUEST before the client’s NEWKEYS. The
USERAUTHREQUEST sent by the attacker must be a valid
authentication request containing his credentials. The attacker
can use any authentication mechanism that does not require

2https://github.com/ronf/asyncssh
3https://pypistats.org/packages/asyncssh

11

https://github.com/ronf/asyncssh
https://pypistats.org/packages/asyncssh

exchanging additional messages between client and server,
such as password or publickey. Due to a state machine
flaw, the AsyncSSH server accepts the unauthenticated USER-
AUTHREQUEST message and defers it until the client has
requested the authentication protocol.

To avoid a race condition between the USERAUTHRE-
QUEST sent by the client and USERAUTHREQUEST injected
by the attacker, the attacker delays the client’s USERAUTHRE-
QUEST until after the server signaled a successful authentica-
tion in response to the injected USERAUTHREQUEST. The
AsyncSSH server silently ignores any additional authentica-
tion request after a successful authentication.

To complete the attack, the attacker has to fix the sequence
numbers using one of two strategies (note that Figure 5 only
shows the first strategy):

1. Suppose the client sends an extra message before SER-
VICEREQUEST. In that case, the attacker can delete that
message from the channel, effectively performing the
(0,1)-prefix truncation attack with USERAUTHREQUEST
instead of the usual IGNORE message.

2. Suppose the server sends an extra message before SER-
VICEACCEPT. In that case, the attacker can delete that
message from the channel after injecting an additional
UNKNOWN message to the client before NEWKEYS,
triggering a UNIMPLEMENTED response. This increases
both C.Snd and C.Rcv, moving the send count deficit
from the client to the server.

Evaluation. We successfully evaluated the attack against
AsyncSSH 2.13.2 as a server, connecting to with Async-
SSH 2.13.2 and OpenSSH 9.4p1.

7 SSH Deployment Statistics

To estimate the impact of the prefix truncation attacks, we
scan for the SSH servers preferring or supporting the vulner-
able encryption modes. Similarly, to estimate the impact of
the extension downgrade attack, we scan for servers sending
EXTINFO messages.

Methodology. For scanning, we used ZMap [14] and
ZGrab2 [13] on port 22 of the entire IPv4 address space.
The first scan was performed over two days in early October
2023, totaling 15.164M SSH servers.

As ZGrab2 cannot capture SSH extensions, we performed
a second scan at the end of June 2023 using a custom tool
on a subset of 220 open ports discovered by ZMap. The scan
covered a total of 830k servers. All data relating to the use of
extension negotiation in SSH is sourced from this scan.

In SSH, the algorithm order of the client determines which
algorithm is preferred. However, we cannot scan for actual
client use. Assuming that servers and clients are bundled in

Cipher Family Preferred Supported

ChaCha20-Poly1305 8,739k 57.64% 10,247k 67.58%
AES-CTR 4,785k 31.56% 14,866k 98.04%
AES-GCM 1,219k 8.04% 10,450k 68.92%
AES-CBC 236k 1.56% 4,069k 26.84%
Other 147k 0.97% - -
Unknown / No KEXINIT 34k 0.23% - -

Total 15,164k 100%

Table 1: Preferred SSH cipher families as of October 2023.

a single product and share algorithm preference and support,
we use the server’s lists as a surrogate, as was also done in [1].

Symmetric Encryption Algorithms. In Table 1, we show
the number of servers preferring and supporting various en-
cryption modes. A cipher is preferred if placed first in the list
of supported algorithms.

We find that, by far, the most preferred encryption cipher
is ChaCha20-Poly1305, with 57.64% listing this algorithm
first. This is followed by AES-CTR (31.53%) and, with some
distance, by AES-GCM (8.04%) and AES-CBC (1.56%).

Authenticated Encryption Modes. As non-AEAD ciphers
must be combined with a MAC, we also evaluate which au-
thenticated encryption modes are preferred and supported by
the servers. The numbers for the AEAD modes ChaCha20-
Poly1305 (57.64%) and GCM (8.04%) are identical to those
for encryption modes, as the MAC is already integrated. Pref-
erence for CTR modes is split into a majority for CTR-EaM
(26.14%) and a minority for CTR-EtM (5.46%). Preference
for CBC modes is mostly CBC-EaM (2.37%), while only a
marginal share of servers prefers CBC-EtM (0.09%).

In summary, 57.73% of all servers prefer an authenticated
encryption mode vulnerable to our attacks.

Looking at the support for authenticated encryption modes
vulnerable to our attacks, we find that 67.58% of all servers
support ChaCha20-Poly1305, while 17.24% support CBC-
EtM. In total, 77% support at least one vulnerable mode, and
7% support both (these numbers are not shown in the table).

SSH Extensions. We also looked at SSH extensions offered
by servers before user authentication; see Table 3. We can
see that 76.81% of all servers send the server-sig-algs
extensions to indicate support for better signature schemes
for client public key authentication. Furthermore, 8.8% send
the publickey-hostbound extension, improving security
for multi-hop authentication authentication using SSH agent.
Both extensions provide opportunities for downgrade attacks,
as their absence can weaken the strength of the authentication.

12

Cipher Mode and MAC Preferred Supported

ChaCha20-Poly1305 8,739k 57.64% 10,247k 67.58%
CTR-EaM 3,964k 26.14% 4,200k 27.70%
GCM 1,219k 8.04% 10,450k 68.92%
CTR-EtM 828k 5.46% 10,685k 70.46%
CBC-EaM 359k 2.37% 1,585k 10.46%
CBC-EtM 14k 0.09% 2,614k 17.24%
Other 4k 0.28% - -
Unknown / No KEXINIT 34k 0.23% - -

Total 15,164k 100%

Table 2: Distribution of supported authenticated encryption
modes as of October 2023.

Extension name Times Offered

server-sig-algs 637,466 76.81%
publickey-hostbound@ 73,040 8.80%
delay-compression 283 0.03%
no-flow-control 283 0.03%
global-requests-ok 283 0.03%

Table 3: SSH extensions offered by servers after the initial
handshake, @openssh.com abbreviated to @. Extensions sent
by clients, and by servers upon successful client authentica-
tion are not included.

8 Suggested Countermeasures

As a stop-gap measure, the vulnerable cipher modes can be
disabled. Suitable alternatives are AES-GCM or AES-CTR,
which are widely supported. However, the root cause analysis
shows that the real problems are in the SSH specification.
We therefore suggest two changes to the specification, and a
way to negotiate support for these changes without breaking
backward compatibility.

Sequence Number Reset. Resetting sequence numbers to
zero when encryption keys are activated ensures that these
sequence number manipulations during the handshake can no
longer affect the secure channel. Resetting the sequence num-
bers is a major break in compatibility. To avoid connection
failures due to only one peer resetting their sequence numbers,
we suggest that an implementation signals the support for this
countermeasure by including an identification string in the list
of supported key exchange algorithms. The SSH extension
negotiation mechanism is already employing this method. If
and only if both peers signal support for this countermeasure,
the sequence numbers will be reset.

Full Transcript Hash. The second countermeasure is to
authenticate the full handshake transcript, as seen by the client
and the server. This can detect any attempts of handshake

manipulation by a MitM attacker, including sequence number
manipulation through our techniques. It is not possible to
simply extent the scope of the exchange hash, as the server
signature is transmitted before the new keyset is taken into
use. Therefore, any messages sent after the key exchange, but
before NEWKEYS, can not be included. We suggest that the
both peers send a MAC of the full transcript at the start of
the secure channel, similarly to TLS FINISHED messages.
Signaling support should be done as above.

Other Issues. We suggest that SSH specifies “end-of-
communication” messages to detect suffix truncation attacks.
Also, AsyncSSH should be hardened to disallow unauthenti-
cated, application-layer messages during the SSH handshake.

9 Conclusion

We have shown that the complexity of SSHv2 has increased
over its 25 years of development to a point where the addition
of new algorithms and features has introduced new vulnerabil-
ities. The root cause analysis has shown that the potential for
our attacks was already present in the original specification.
Handshake transcripts were never fully authenticated, and
sequence numbers were never reset to 0. However, as new
authenticated encryption modes and extension messages were
added, these weaknesses grew into exploitable vulnerabilities.

We introduced the novel sequence number manipulation
and prefix truncation attacks for secure channels, which in-
validate the INT-PST [15] security of SSH BPP for certain
ciphers. We extended this vulnerability to real-world exploits
like disabling SSH extension negotiation. This yields novel
insights into the complex interplay between a practical se-
curity mechanism (sequence numbers) and abstract security
notions (INT-PTXT vs. INT-CTXT vs. AEAD, [5]): Since
implicit sequence numbers are not transmitted, they cannot be
part of the ciphertext – therefore generic EtM modes fail, and
INT-CTXT does not protect against prefix truncation. INT-
PTXT and AEAD modes, on the other hand, do include them,
either as part of the plaintext, or as associated data.

Our close look at the Extension Negotiation mechanism
reveals its design weaknesses: First, sending EXTINFO is
optional even if both parties signal support for extension ne-
gotiation during the handshake. Second, SSH extension ne-
gotiation cannot be used to negotiate extensions affecting the
SSH handshake itself, e.g., the countermeasures proposed
in this paper. As a consequence, all extension negotiations
should be done within the KEXINIT.

Although we suggest backward-compatible countermea-
sures to stop our attacks, we note that the security of the SSH
protocol would benefit from a redesign from scratch. This
redesign should be guided by all findings and insights from
both practical and theoretical security analysis, in a similar
manner as was done for TLS 1.3.

13

References

[1] Martin R. Albrecht, Jean Paul Degabriele, Tor-
ben Brandt Hansen, and Kenneth G. Paterson. A surfeit
of SSH cipher suites. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. My-
ers, and Shai Halevi, editors, ACM CCS 2016, pages
1480–1491. ACM Press, October 2016.

[2] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J.
Watson. Plaintext recovery attacks against SSH. In
2009 IEEE Symposium on Security and Privacy, pages
16–26. IEEE Computer Society Press, May 2009.

[3] Mihir Bellare, Tadayoshi Kohno, and Chanathip Nam-
prempre. Authenticated encryption in SSH: Provably
fixing the SSH binary packet protocol. In Vijayalakshmi
Atluri, editor, ACM CCS 2002, pages 1–11. ACM Press,
November 2002.

[4] Mihir Bellare and Chanathip Namprempre. Authenti-
cated encryption: Relations among notions and analy-
sis of the generic composition paradigm. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of
LNCS, pages 531–545. Springer, Heidelberg, December
2000.

[5] Mihir Bellare and Chanathip Namprempre. Authenti-
cated encryption: Relations among notions and analysis
of the generic composition paradigm. Journal of Cryp-
tology, 21(4):469–491, October 2008.

[6] Florian Bergsma, Benjamin Dowling, Florian Kohlar,
Jörg Schwenk, and Douglas Stebila. Multi-ciphersuite
security of the Secure Shell (SSH) protocol. In Gail-
Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 2014, pages 369–381. ACM Press, November
2014.

[7] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript
collision attacks: Breaking authentication in TLS, IKE
and SSH. In NDSS 2016. The Internet Society, February
2016.

[8] Denis Bider. Extended authentication information in
Secure Shell (SSH). Internet-Draft draft-ssh-ext-auth-
info-01, Internet Engineering Task Force, March 2018.
Work in Progress.

[9] Denis Bider. Extension Negotiation in the Secure Shell
(SSH) Protocol. RFC 8308, March 2018.

[10] Denis Bider. Sending and Handling of Global Requests
in Secure Shell (SSH). Internet-Draft draft-ssh-global-
requests-ok-00, Internet Engineering Task Force, De-
cember 2018. Work in Progress.

[11] Ran Canetti and Hugo Krawczyk. Analysis of
key-exchange protocols and their use for building se-
cure channels. In Birgit Pfitzmann, editor, EURO-
CRYPT 2001, volume 2045 of LNCS, pages 453–474.
Springer, Heidelberg, May 2001.

[12] Wei Dai. email to IETF mailing list. https:
//www.ietf.org/ietf-ftp/ietf-mail-archive/
secsh/2002-02.mail, 2002. Accessed: 2023-10-11.

[13] Zakir Durumeric, David Adrian, Ariana Mirian, Michael
Bailey, and J. Alex Halderman. A search engine backed
by internet-wide scanning. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015,
pages 542–553. ACM Press, October 2015.

[14] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
ZMap: Fast internet-wide scanning and its security ap-
plications. In Samuel T. King, editor, USENIX Security
2013, pages 605–620. USENIX Association, August
2013.

[15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson,
and Kenneth G. Paterson. Data is a stream: Security
of stream-based channels. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 545–564. Springer, Hei-
delberg, August 2015.

[16] Cédric Fournet. email to IETF mailing list.
https://mailarchive.ietf.org/arch/msg/tls/
extoO9ETJLnEm3MRDTO23x70DFM, 2015. Accessed:
2023-10-16.

[17] Torben Brandt Hansen. Cryptographic Security of SSH
Encryption Schemes. Phd thesis, University of London,
2020.

[18] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and
J. Alex Halderman. Mining your ps and qs: Detection of
widespread weak keys in network devices. In Tadayoshi
Kohno, editor, USENIX Security 2012, pages 205–220.
USENIX Association, August 2012.

[19] Kevin Igoe. Suite B Cryptographic Suites for Secure
Shell (SSH). RFC 6239, May 2011.

[20] Kevin Igoe and Jerome Solinas. AES Galois Counter
Mode for the Secure Shell Transport Layer Protocol.
RFC 5647, August 2009.

[21] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg
Schwenk. On the security of TLS-DHE in the stan-
dard model. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages
273–293. Springer, Heidelberg, August 2012.

14

https://www.ietf.org/ietf-ftp/ietf-mail-archive/secsh/2002-02.mail
https://www.ietf.org/ietf-ftp/ietf-mail-archive/secsh/2002-02.mail
https://www.ietf.org/ietf-ftp/ietf-mail-archive/secsh/2002-02.mail
https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM
https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM

[22] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck
Wee. On the security of the TLS protocol: A systematic
analysis. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages
429–448. Springer, Heidelberg, August 2013.

[23] Adam Langley and Wan-Teh Chang. ChaCha20 and
Poly1305 based Cipher Suites for TLS. Internet-Draft
draft-agl-tls-chacha20poly1305-04, Internet Engineer-
ing Task Force, November 2013. Work in Progress.

[24] Adam Langley, Wan-Teh Chang, Nikos Mavro-
giannopoulos, Joachim Strombergson, and Simon Josef-
sson. ChaCha20-Poly1305 Cipher Suites for Transport
Layer Security (TLS). RFC 7905, June 2016.

[25] Chris M. Lonvick and Sami Lehtinen. The Secure Shell
(SSH) Protocol Assigned Numbers. RFC 4250, January
2006.

[26] Chris M. Lonvick and Tatu Ylonen. The Secure Shell
(SSH) Authentication Protocol. RFC 4252, January
2006.

[27] Chris M. Lonvick and Tatu Ylonen. The Secure Shell
(SSH) Connection Protocol. RFC 4254, January 2006.

[28] Chris M. Lonvick and Tatu Ylonen. The Secure Shell
(SSH) Protocol Architecture. RFC 4251, January 2006.

[29] Chris M. Lonvick and Tatu Ylonen. The Secure Shell
(SSH) Transport Layer Protocol. RFC 4253, January
2006.

[30] Damien Miller. This document describes the chacha20-
poly1305@openssh.com authenticated encryption
cipher supported by openssh. https://cvsweb.
openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/
PROTOCOL.chacha20poly1305?rev=1.5. Accessed:
2023-10-18.

[31] Damien Miller. SSH agent restriction. https://www.
openssh.com/agent-restrict.html, 2022. Ac-
cessed: 2023-10-17.

[32] Damien Miller, Markus Friedl, Mike Frysinger, Todd C.
Miller, and Darren Tucker. This documents openssh’s
deviations and extensions to the published ssh protocol.
https://cvsweb.openbsd.org/cgi-bin/cvsweb/
src/usr.bin/ssh/PROTOCOL?rev=1.49. Accessed:
2023-10-18.

[33] Chanathip Namprempre, Tadayoshi Kohno, and Mihir
Bellare. The Secure Shell (SSH) Transport Layer En-
cryption Modes. RFC 4344, January 2006.

[34] Richard Ogier. OSPF Database Exchange Summary
List Optimization. RFC 5243, May 2008.

[35] Kenneth G. Paterson, Thomas Ristenpart, and Thomas
Shrimpton. Tag size does matter: Attacks and proofs
for the TLS record protocol. In Dong Hoon Lee and Xi-
aoyun Wang, editors, ASIACRYPT 2011, volume 7073
of LNCS, pages 372–389. Springer, Heidelberg, Decem-
ber 2011.

[36] Kenneth G. Paterson and Gaven J. Watson. Plaintext-
dependent decryption: A formal security treatment of
SSH-CTR. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 345–361. Springer, Hei-
delberg, May / June 2010.

[37] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.

[38] Phillip Rogaway. Authenticated-encryption with
associated-data. In Vijayalakshmi Atluri, editor, ACM
CCS 2002, pages 98–107. ACM Press, November 2002.

[39] Ben Smyth and Alfredo Pironti. Truncating TLS con-
nections to violate beliefs in web applications. In 7th
USENIX Workshop on Offensive Technologies (WOOT
13), Washington, D.C., August 2013. USENIX Associa-
tion.

[40] Dawn Xiaodong Song, David A. Wagner, and Xuqing
Tian. Timing analysis of keystrokes and timing attacks
on SSH. In Dan S. Wallach, editor, USENIX Security
2001. USENIX Association, August 2001.

[41] Michael Williams, Michael Tüxen, and Robin Seggel-
mann. Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension.
RFC 6520, February 2012.

[42] Stephen C. Williams. Analysis of the SSH key exchange
protocol. In Liqun Chen, editor, 13th IMA International
Conference on Cryptography and Coding, volume 7089
of LNCS, pages 356–374. Springer, Heidelberg, Decem-
ber 2011.

15

https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?rev=1.5
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?rev=1.5
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.chacha20poly1305?rev=1.5
https://www.openssh.com/agent-restrict.html
https://www.openssh.com/agent-restrict.html
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL?rev=1.49
https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL?rev=1.49

A Advanced Sequence Number Manipulation

Using that sequence numbers rollover to zero after 232 − 1,
the attacker can also attempt to decrement C.Rcv and S.Rcv:

Technique RcvDecrease (Figure 6b). During the hand-
shake, a MitM attacker can decrease C.Rcv (resp. S.Rcv)
by N, while not changing any other sequence number, by
sending 232−N IGNORE messages to the client (resp. server).

A single IGNORE message is only 5 bytes, so it fits into a
single block even for a 128-bit block cipher. Sending 232 −N
such messages transfers ≈ 232 · 16B ≈ 69GB of data. Con-
sequently, this technique can fail on implementations with
timeouts or restrictions to the amount of data or the number
of messages transferred during the handshake.

We can also combine these techniques to manipulate the
C.Snd and S.Snd sequence numbers. For this, we require a
message that generates a response message but is otherwise
ignored. Conveniently, the SSH standard requires this for all
messages with unrecognized message IDs [34, Sec. 11.4]. Let
UNKNOWN be a message with an unrecognized message ID.

Technique SndIncrease (Figure 6c). During the hand-
shake, a MitM can increase C.Snd (resp. S.Snd) by N while
not changing any other sequence number by sending N UN-
KNOWN and 232 −N IGNORE messages to the client (resp.
server) and deleting all generated UNIMPLEMENTED mes-
sages.

Technique SndDecrease (Figure 6d). During the hand-
shake, a MitM can decrease C.Snd (resp. S.Snd) by N
while not changing any other sequence number by sending
232 −N UNKNOWN and N IGNORE messages to the client
(resp. server), and deleting all generated UNIMPLEMENTED
messages.

Here, the total data transfer required is ≈ 69GB for Snd-
Increase and twice as much, or ≈ 138GB for SndDecrease.
Again, these techniques may fail on implementations that
have timeouts or restrict the amount of data or number of
messages exchanged during the handshake.

Evaluation. We verified all techniques successfully against
PuTTY 0.79. Additionally, our experiments show that
OpenSSH 9.5p1 recognizes a rollover of sequence numbers
and terminates the connection, thus not being affected by
any advanced technique. AsyncSSH 2.13.2 and libssh 0.10.5
terminate the connection due to handshake timeouts before
these techniques conclude. Dropbear 2022.83 disconnects on
UNKNOWN messages instead of responding with UNIMPLE-
MENTED, but allows Rcv to roll over, therefore being affected
by RcvDecrease only.

Snd Rcv

IGNORE
𝑥 𝑦

𝑥 𝑦 + 1

(a) RcvIncrease

Snd Rcv

IGNORE
𝑥 𝑦

𝑥 𝑦 + 1 IGNORE

IGNORE

[…]

IGNORE

IGNORE

[…]

𝑥 232 − 1

𝑥 0

𝑥 𝑦 − 2

𝑥 𝑦 − 1

(b) RcvDecrease

UNIMPLEMENTED

Snd Rcv

UNKNOWN

IGNORE

IGNORE

[…]

𝑥 𝑦

𝑥 𝑦 + 1

𝑥 + 1 𝑦 + 1

𝑥 + 1 𝑦 − 1

𝑥 + 1 𝑦

(c) SndIncrease

UNIMPLEMENTED

Snd Rcv

UNKNOWN

IGNORE

𝑥 𝑦

𝑥 𝑦 + 1

𝑥 − 1 𝑦 − 1

𝑥 − 1 𝑦

UNKNOWN

[…]

UNIMPLEMENTED

𝑥 −2 𝑦 − 2

𝑥 − 2 𝑦 − 1

(d) SndDecrease

Figure 6: Techniques for sequence number manipulation as a
MitM in the SSH protocol. All techniques can target either
client or server before the initial handshake concludes. The
MitM deletes all generated UNIMPLEMENTED messages.

B More Extensions

These extensions are defined in addition to those listed in Sec-
tion 5.

• no-flow-control - Negotiable extension to disable
flow control in the SSH connection layer [9].

• delay-compression [9] - Negotiable extension to rene-
gotiate compression algorithms as delayed compression
without a key re-exchange. Delayed compression in the
context of SSH refers to any compression that will take
effect after successful client authentication.

• elevation - Informational client-side extension to spec-
ify the desired security context in case of administrator
logins in Windows operating systems [9].

• global-requests-ok [10] - Informational extension
to announce global requests within the SSH connection
layer will be handled in accordance with RFC 4254.

• ext-auth-info [8] - Client-side extension to signal
support for extended authentication failure messages
during client authentication containing an arbitrary set
of key-value pairs.

16

	Introduction
	SSH Channel Security
	Overview of Our Attacks on SSH
	Our Contributions

	Related Work
	Background
	Breaking SSH Channel Integrity
	Sequence Number Manipulation
	Prefix Truncation Attack on the BPP
	Analyis of Encryption Modes
	Not Vulnerable
	Vulnerable And Perfectly Exploitable
	Vulnerable, But Not Exploitable
	Vulnerable And Probabilistically Exploitable

	Breaking SSH Extension Negotiation
	SSH Extension Negotiation
	Extension Downgrade Attack

	Message Injection Attacks on AsyncSSH
	Rogue Extension Negotiation Attack
	Rogue Session Attack

	SSH Deployment Statistics
	Suggested Countermeasures
	Conclusion
	Advanced Sequence Number Manipulation
	More Extensions

